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Expressions are given which relate the propagation velocities of mechanical waves to the elastic 
constants in single crystals of trigonal symmetry (characterized by six elastic constants). These 
expressions derive from the Christoffel equations without introduction of approximations. It  is also 
shown how the expressions can be employed to evaluate the elastic constants in a relatively simple, 
straightforward manner from ultrasonic measurements. 

1. I n t r o d u c t i o n  

A number of experimental methods exists for the 
determination of the elastic constants and elastic 
moduli of single crystals. The velocities with which 
ultrasonic waves are propagated along certain crystal- 
lographic directions are frequently used to deduce the 
elastic constants. The relationship between measured 
velocities and elastic constants is given by the 
Christoffel equations. The general form of these 
equations is applicable to any crystalline system; 
however, manipulation of the equations is quite in- 
volved for all but the most simple crystallographic 
groups. Therefore, various simplifying schemes have 
been developed to deal with the Christoffel equations. 
Bhimasenachar (1945) describes a method which, 
when applied to the trigonal system, gives approx- 
imate values for some of the elastic constants because 
small coupling terms in the Christoffel equations are 
omitted. Another method is described by Arenberg 
(1950) who makes use of a perturbation expansion 
which is exact in the limit and applies to any crystallo- 
graphic direction. This approach is further investigated 
by Neighbours & Smith (1950). 

In this communication we develop for the trigonal 
group (six elastic constants) relatively simple ex- 
pressions which derive from the Christoffel equations 
without introduction of approximations. We also 
show how these expressions can be employed for the 
evaluation of the elastic constants from ultrasonic 
measurements. 

2. Theory  

Three displacement vectors can be associated with an 
elastic wave propagated in an anisotropic medium. 
These vectors relate to three different modes of vibra- 
tion which are propagated with three distinct veloc- 
ities. In general, one of these modes represents a 
predominantly longitudinal wave whereas the other 
two represent predominantly shear waves. Pure waves 
can be propagated only in very special crystallographic 
directions. 

* This investigation was supported in part by the Air Force 
Office of Scientific Research (ARDC) under Contract No. 
AF49(638)-894. 

Let the direction of wave propagation in a single 
crystal have direction cosines l, m, n with respect to a 
Cartesian coordinate system attached to the crystal 
in the usual way, as described by Cady (1946). The 
three possible wave velocities V can, in principle, be 
found in terms of the elastic constants Cpq from the 
roots of the secular polynomial of the Christoffel 
equations 

~ n  - ~ V 2 ~12 ~13 
~12 ~022- QV 2 ~28 =0  (1) 
~18 ~v2~ ~3~ - ~ V 2 

where Q is the density, and where the ~ab are defined 
a s  

~Pab ~- 12Clalb "{- m2 C2a2b "~- n2C3a3b ~- lm ( Cla2b -~- C2alb ) 

+ In (Cla3~ + C3alb) + mn (Cea3b + C8a2~) • (2) 

The constants C~j~ can be written in the usual form 
Cpq by replacing the suffixes ij, kl= 11, 22, 33, 23, 13, 12 
by p, q = l ,  2 , . . . ,  6. Expressions for the ~a~ for a 
particular crystal group can be written down by 
substituting the C~q from the appropriate matrix of 
elastic constants given in standard reference treatises. 

For a number of crystallographic systems, some of 
the (pal, vanish if two of the direction cosines equal 
zero. Some of the Cpq can then be obtained quite 
readily. However, the determination of the remaining 
C~q is possible only if additional velocity measure- 
ments are made in directions for which at least two 
of the direction cosines are different from zero. In 
this case, (1) usually becomes quite difficult to deal 
with directly. 

Now, the secular determinant equation (1), if ex- 
panded, is of the form 

.F3 + alF ~ + a2F + a8 = 0 ,  (3) 

where F =~  V 2. I t  is known from theory of equations* 
that  

a l =  - $ 1  (4) 
and 

a~= -½s2+ ~s~, (5) 

* See, for example, L. E. Dickson, First Course in the Theory 
of Equations (John Wiley & Sons, Inc., New York, 1931). 
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where 
S~= ~( V~ + V~ + V~) , (6) 

and  
s~= Q~(v~ + v~ + v~). (7) 

I t  remains  to solve (4) and (5) for $1 and $2 in terms 
of al  and  as, and  to compute al and a~ for a given 
crystal  group from (1). There results then  a relation- 
ship between quanti t ies  which can be determined from 
exper iment  (namely, 81 and $2) and the elastic 
constants  Cpq. 

For crystals with tr igonal  symmet ry  (six elastic 
constants) one has 

q)11 = 12Ca + meC66 + n2C44 -b 2mnC14 

cf~ = 12C66 + m2C~ + n2C44 - 2ranCh4 

cf~ = 12C4a + m2C4a + n2C~3 

q~12 = 21nC14-t- lm( C~ l - C66 ) 

~la = ln(Cla + C44) + 21mC~4 

~2~ ---- (1 ~ -- m2)C14 + mn( Cla + C44) • (8) 

Proceeding as outl ined above, we f ind for the tr igonal 
group tha t  

$1:Cl1-~-C44-~C66-~-n2(C33-~-C44-Cll-C66) (9) 
and 

$2 = n4C~3 + (1 + n4)C]a + (1 - n2)2(C~1 + C~6 + 2C~a) 

+ 2ne( 1 - n2)[Ca~a + 4C~a + C44(C1~ + Cas + C66 + 2C~s)] 

- -  4mn(m 2 -- 312)C14(C~1 + C44 + C~ - C66) . (10) 

3. A p p l i c a t i o n  

As an example  of the use of (9) and (10) we calculate 
the elastic constants of sapphire from a set of velocity 
measurements  reported by  W a c h t m a n  et al. (1960). 
These measurements  were made in the directions 
specified by  the direction cosines l, m, n, given in 
Table 1. 

Table 1. Direction cosines of  measurements 
by Wachtman et al. 

Direction of Direction cosines 
measurements 1 m n 

(x)  1 o o 
(Y) o 1 o 
(z) o o 1 
(45) 0 1[ ]/2 1/]/2 

(135) o 1/V2 -x lv2  

For direction (Z), (9) reduces to 

s~(z)=c~3+2c~=e[v~(z)+ v~(z)+ v~(z)]. (11) 
Since for direction (Z), equat ion (1) is diagonal,  one 
finds immedia te ly  tha t  V2(Z)= V3(Z), Ca3=~V~(Z),  
C44= ~ V~(Z). A l s o ,  

s~(x)=c~l +c~+c~=dv~(x)+ v~(x)+ v~(x)], 
(12) 

and Cn = Q V~(X). With  Cll and C~ known, C66 follows 
from (12). Now C13 and C14 still need to be determined.  
I t  follows from (10) tha t  

S2(X)  = $ 2 ( Y )  ~ 2 2 2 =C44+2C14+Ca1+C66,  (13) 

and in this expression only C~4 is unknown. To infer 
the sign of C14 one m a y  consider 

32(45) - $2(135) = - 2Ca4(Cn + C44 + C13- C66) , (14) 

where 

Z~.(45)- Z2(135)= ~e[ V~(45) + V~(45) + V~(45)] 

-e2[v~(135)+ v~(135)+ V~035)]. (15) 

From the da ta  one finds whether  $2(45) > $2(135) or 
$2(45) < $2(135), i.e. whether  the r ight -hand side of 
(14) is positive or negative. Considering the possible 
magni tudes  of the constants one sees tha t  the terms 
in brackets of the r ight -hand side of (14) usual ly 
represent a positive quant i ty .*  Therefore, if 
$2(45) < $2(135), C14 > 0, and if $2(45) > $2(135), C14 < 0. 
Wi th  C14 determined, the value of C13 follows from (14). 

Numerical  evaluat ion is thus  straightforward. F rom 
(11) one obtains C33=4.981 and C4a=1-474. (These 
and  subsequent values of the elastic constants are in 
units  of 1012 dynes/era.2). Equat ion  (12) yields Cl1= 
4.968 and C66 = 1.666. From (13) one finds C14-- _+ 0.22, 
and since $2(45)=28.279 and $2(135)=25-484, i t  fol- 
lows tha t  C 1 4 = - 0 . 2 2 .  From (14) the value of C18 is 
then 1.57. The results agree satisfactorily with those 
cited by  W a c h t m a n  et al. The value of C13 given here 
is higher than  tha t  quoted by  Wach tman ,  C1~= 
1.109_+ 0.022. However, changing the appropriate  
values of 'calculated velocities' cited by  W a c h t m a n  
by approximate ly  0.1% yields C~3 = 1.05. Thus it mus t  
be noted tha t  the values of C13 and C~a are ra ther  
sensitive to the accuracy of velocity data.  

The general method given here can be applied to 
other crystal  systems as well. A note giving appro- 
priate equations is in preparation.  
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